
Unidad Básica: Principio de Pascal

Principio de Pascal

Consideremos un líquido confinado en un envase y encerrado en su parte superior por un émbolo sobre el cual actúa una fuerza \vec{F} . Tenemos que en este caso la presión externa p_{ext} en la superficie superior del líquido está dada por

$$p_{ext} = p_0 + p_F + p_W$$

Donde

 p_0 es la presión ejercida por la atmósfera.

 p_F es la presión ejercida por una fuerza externa.

 p_W es la presión ejercida por el peso del émbolo.

Tenemos entonces que en esta situación podemos escribir a partir de la expresión

$$p = p_0 + \rho g h$$

la presión p para un punto A ubicado a una profundidad h de la superficie del líquido como

$$p = p_{ext} + \rho g h$$

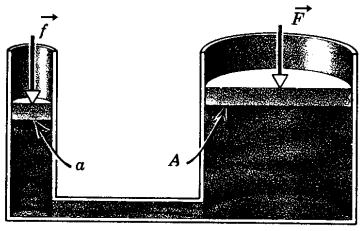
Considerando que los líquidos son casi incomprensibles tenemos que la altura h entre el punto A y la superficie del líquido no varía, por lo tanto podemos considerar que $\rho gh = cte$ para el punto A.

Esto implica que cualquier variación de la presión externa Δp_{ext} produce una variación de la presión Δp en el punto A.

Este resultado fue enunciado por Blaise Pascal (1623-1662) y se conoce como el principio de Pascal:

" Toda presión aplicada a un líquido confinado se transmite sin reducción a todos lo puntos del líquido y a las paredes del depósito que lo contiene ".

En este principio se basa la prensa hidráulica, el gato hidraúlico, elevador hidraúlico, elevador de automóviles, la dirección hidraúlica de los automóviles.


Problemas resuelto

Problema 1, H-17-11, N 19

En la prensa hidráulica de la figura, se usa un émbolo de pequeña sección transversal "a" para ejercer una pequeña fuerza f en el líquido encerrado. Un tubo de conexión conduce a un émbolo más grande de sección transversal "A".

- a) ¿Qué fuerza \vec{F} podrá sostener el émbolo mayor?
- b) Si el émbolo menor tiene un diámetro de 1.5 pulg. y el émbolo grande un diámetro de 21 pulg, ¿qué peso colocado en el émbolo pequeño podrá sostener un peso de 2.0 toneladas en el émbolo grande?

Datos

$$d = 1.5 \text{ pulg}$$
 $D = 21 \text{ pulg}$

$$P = 2.0 \ ton = 4000 \ lb$$
 1 $lb = 4.448 \ Nt$

Solución

a) Las presiones en ambos émbolos son iguales (Principio de Pascal) por lo tanto

$$\frac{f}{a} = \frac{F}{A}$$

de donde tenemos

$$F = f \frac{A}{a} \tag{1}$$

b) De la expresión (1) tenemos

$$f = F\frac{a}{A} = F\frac{\pi r^2}{\pi R^2} \tag{2}$$

considerando que

$$r = d/2$$
 $R = D/2$

Tenemos $f = F\left(\frac{d}{D}\right)^2$ reemplazando en esta expresión los valores numéricos se tiene

$$f = 4000 \ lb \left(\frac{1.5 \text{ pulg}}{21 \text{ pulg}} \right)^2 = 20.41 \ lb$$

$$f = 90.73 N$$

Bibliografía Principio Pascal

Hewitt P. G. 2002. *Conceptos de Física*. Parte II Propiedades de la materia. Capítulo 11 Líquidos. Principio de Pascal. México. Limusa.

Máximo Ribeiro da Luz A. y Alvarenga B. 1998. *Física General con experimentos sencillos*. Unidad III Leyes de Newton. Capítulo 8. Hidrostática. 8.4 Aplicaciones de la Ecuación Fundamental, Principio de Pascal. México. Oxford.

Resnick R., Haliday D. y Krane K. S. 2003. *Física*. Tomo I. Capítulo 15 Estática de Fluidos. 15-4 Principios de Pascal y Arquímedes. México. CECSA.

Resnick R. y Haliday D. 1977. *Física*. Tomo I. Capítulo 17 Estática de Fluidos. 17-4 Principio de Pascal y Principio de Arquímedes. México. CECSA.

Wilson J. D. 1996. *Física*. Capítulo 9 Sólidos y Fluidos. 9.2 Presión y Principio de Pascal. México. PrenticeHall.